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Abstract. We investigate the non-equilibrium two-time correlation and response functions and the
associated fluctuation—dissipation ratio for the ferromagnetic Ising chain with Glauber dynamics.
The scaling behaviour of these quantities at low temperature and large times is studied in detail.
This analysis encompasses the self-similar domain-growth (aging) regime, the spatial and temporal
Porod regimes, and the convergence toward equilibrium. The fluctuation—dissipation ratio admits
a non-trivial limit valueX,, = % at zero temperature, and more generally in the aging regime.

1. Introduction

The ferromagnetic Ising chain with Glauber dynamics [1]is one of the simplest non-equilibrium
systems. Consider a finite system consisting/dking spinss,, = +£1, with Hamiltonian

H=—J) 0,041 (1.1)
In its heat-bath formulation the use of Glauber dynamics consists of picking, at every time

stepét = 1/N, a siten = 1, ..., N at random, and updating its spif)(¢) according to the
stochastic rule

+1 with prob. 1+ tanth. (1) tank;ﬁh,,(t))
= -1 with prob. w -2
whereg = 1/T is the inverse temperature, and the local fig¢r) acting ono, (¢) reads
ha (1) = J(0p-1(1) + 0441(7)). (1.3)
In the thermodynamic limi{N — o0), each site is thus updated according to a Poisson

process.
At positive temperature, starting from arandom initial condition, obtained, for instance, by
a quench from infinitely high temperature, the system relaxes to its paramagnetic equilibrium
state. The situation at zero temperature is different. Indeed, still starting from a random initial
condition, the system is unable to relax to any of its two ferromagnetically ordered, symmetry-
related, equilibrium states. In contrast, domains of positive and negative magnetization grow
forever, and, in the scaling regime, the system becomes statistically self-similar with only one
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characteristic length scale, the mean size of domains. This coarsening process is a consequence
of the existence of spontaneous symmetry breaking [2, 3].

The Ising chain is special because its critical temperafuigequal to zero. However, its
dynamical behaviour illustrates that of generic statistical-mechanical models in the absence of
quenched disorder. For the latter, starting from a random initial condition, the system relaxes
exponentially to equilibrium in the high-temperature phéBe> T.). At equilibrium, two-
time quantities such as the correlation functi®fa, s) or the response functiaR(z, s), where
s (waiting time) is smaller than (observation time), only depend on the time difference

t=1t—s52>0 (1.4)
and they are simply related to each other by the fluctuation—dissipation theorem:
dCeq(7)
Req(t) = —B ;q . (1.5)
T

In the low-temperature phas#& < T.) the system undergoes phase ordering. In this non-
equilibrium situation( (¢, s) andR (z, s) are non-trivial functions of both time variables, which
only depend on their ratio at late times, i.e., in the self-similar scaling regime. This behaviour
is usually referred to as aging (for recent review, see [4]). Moreover, no such simple relation
as equation (1.5) holds between correlation and response® (tes,) andaC (¢, s)/ds are no
longer proportional. It is then natural to characterize the distance to equilibrium of an aging
system by the so-called fluctuation—dissipation ratio [4—6]
TR(t,s)
aC(t,s)/0s’

In recent years, several works [4—9] have been devoted to the study of the fluctuation—
dissipation ratio. In the low-temperature phase of aging systems, such as glasses and spin
glasses, or of systems exhibiting domain growxldz, s) turns out to be a non-trivial function
of its two arguments. In the case of coarsening systems, analytical and numerical studies
indicate that the limit fluctuation—dissipation ratio,

Xoo = lim lim X(z,s) a.7)

§—>00 I—>00

X(t,s) = (1.6)

vanishes throughout the low-temperature phase [7, 8].

However, to date, very little attention has been devoted to the fluctuation—dissipation ratio
X (¢, s) for non-equilibrium systemat criticality. From now on, we will only consider non-
disordered systems. For instance, one may wonder whether there exists, for a given model, a
well-defined limitX , atT = T, different fromits value in the low-temperature phase. Indeed,

a priori, for a system without disorder, such as a ferromagnet, quenched from infinitely high
temperature to its critical point, the limit fluctuation—dissipation raig at 7 = T, (if it
exists) may take any value betwe&n, = 1 (T > T,.: equilibrium) andX,, = 0 (T < T,.:
domain growth).

The only cases of critical systems for which the fluctuation—dissipation ratio has been
considered are, to our knowledge, the models of [5] (the random walk model, the free Gaussian
field model, and the two-dimension&lY model at zero temperature) which share the limit
fluctuation—dissipation rati&,, = % and the backgammon model, a mean-field model for
which T, = 0, where it has been shown tht, = 1, up to a large logarithmic correction, for
both energy and density fluctuations [10, 11].

In this work we investigate the non-equilibrium response function and fluctuation—
dissipation ratio for the Glauber—Ising chain, both at zero temperature and in the scaling
regime of low temperatures. Exact results for these two-time quantities are derived, exploiting
the solvability of the model. We then perform a detailed analysis of their scaling behaviour
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at low temperature and large times. Since the computatioR(afs) and X (¢, s) requires

the knowledge of the equal-time correlation function, the two-time correlaigns), and

of its derivative with respect to one of the two times (see equation (1.6)), we will include
the computation and the scaling analysis of the latter quantities, though a number of papers
have already dealt with the study of correlations in the Glauber—Ising chain [1,12-16]. Our
presentation will thus be complete and self-contained, and the computation of all quantities
will follow the same integral-transform methods.

In a forthcoming publication [17], we will present a study of the critical response and
fluctuation—dissipation ratio for the ferromagnetic spherical model in any dimetsior2,
and for the two-dimensional Ising model. Both models possess a whole low-temperature phase
for T < T., hence they are faithful representatives of generic domain-growth systems.

One salient outcome of these joint works is the realization that the limit fluctuation—
dissipation ratioX ., is a novel universal characteristic of critical dynamics (see the discussion
at the end of this paper). For the Ising chain at its critical temperdtuse 0, we obtain the
valueX,, = % The occurrence of a common value g, between the Ising chain and the
models considered in [5] seems rather coincidental, for the time being.

In the following, we shall make use of the paramejemndy, defined by

uw = —Intanh(8J) y =tanh(28J) = (1.8)

coshy”

These parameters are related to the equilibrium correlation lépgjth8] and the equilibrium
relaxation timere, (See equation (2.16)) by

1 1
- = = 1.9
Eeq M Tea= 1, (1.9)
Both diverge exponentially quickly as the critical temperafyre- 0 is approached, according
to

& 2 e
eq ™ N Teq ~ F ~ > (1.10)
Hence we have the scaling law
Teq ~ 265, (1.11)

corresponding to a dynamical critical exponent 2, and reflecting the diffusive nature of
domain growth at zero temperature.

We close this introduction with a discussion about relevant timescales. For two-time
quantities such a€ (¢, s), R(z, s), X (¢, s), three timescales are to be compared in the scaling
regime of long times and low temperature, namely = r — s andreq. Considering any two
of these timescales as comparable, with an arbitrary ratio between them, and small (or large)
compared to the third one, six different regimes can be defrgrdbri. Three of them will be
of interest in this work, which we summarize here for convenience:

T~ TgqK S ! equilibrium (1.12)
§~T KL Teg self-similar domain growth (aging) (1.13)
TS~ Teq! early-time or temporal Porod regime (1.14)

Aging persists forever at zero temperature, just as the coarsening process itself, while it is
interrupted at the timescatgg at any low but finite temperature.
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2. Magnetization profile

In this section we present the methods used throughout the paper applied to the example of the
relaxation of the magnetization profile

M, (1) = {0,(1)) (2.2)

where the brackets denote an average over the thermal history of the system and over the initial
conditions, which are unspecified for the time being.

The time evolution of the magnetizatiov, (¢) is readily deduced from the stochastic
rule (1.2), and is given by

dM,, (1)
dt( = —M,(r) + (tanh(Bh, (1))). (2.2)
Since the local field,, only assumes three symmetric values, 0 &2d', we have
tanr(/ghn) = %hn = %(Unfl + Ou+1) (23)
leading to the linear evolution equations
dM, (1) Y
T = _Mn (t) + E(Mn—l(t) + Mn+l(t))~ (24)

The existence of closed, linear equations for the magnetization, and more generally for higher-
order correlation functions, ensures the solvability of the model [1].

In order to solve coupled equations of the form (2.4), we shall make extensive use of
Laplace and Fourier transforms. For any quanfjtit), depending both on continuous time
and on the discrete site labglwe introduce:

o the temporal Laplace transform

o0 d
fr(p) = / fied f) = / e ()" (2.5)
0 7Tl

o the spatial Fourier transform
_ 2r d )
ffa.n=> ™  fi@)= f Z—qu(q, 1" (2.6)
n 0 4
o the Fourier-Laplace transform

fFL(CI p) = Z/oo f (t)e—(pl+inq) dt f (I) = / d_p/h d_qf':l-(q p)epl+inq
, n 0 " : 2]T| 0 27‘[ ’ !

(2.7
Using the above integral transforms, equation (2.4) can be recast as
dMF(q, )
—— " = (ycosg — hMF(g.1) (2.8)
or else as
pM™-(q. p) = (y cosg — HYM™ (g, p) + M (g, 1 = 0) (2.9)
yielding
MF(g,t =0)
Mg, pp= ——— . 2.10
(q.p) > +1_ 7 cosg (2.10)

Consider first the locally magnetized initial condition where the spin at the origin is
pointing upwards, i.eqo(r = 0) = +1, but the configuration is otherwise totally random. The
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corresponding solutio6, (r) to equation (2.4) is the Green function of the problem. We have
G,(t =0) = §, 0, S0 thatGF (¢, t = 0) = 1. Equation (2.10) then reads

1
G, pp= ——M— 2.11
(4. p) > +1_ycos (2.11)
hence
GF(q,1) = e cosa=11 (2.12)
and
2 dq )
G,(t) = e"/ —LerIeosating — g=!'1 (yt) (2.13)
0 277.'

wherel, is the modified Bessel function. Equation (2.11) also yields

1 pri=yp+12—y2\"
Vip+D2—y? v '
Returning to equation (2.4), its general solution in direct space is obtained by inverting
equation (2.10), yielding the following spatial convolution:

My (1) = My(t =0) % Gy(t) = Y My (t = 0)G_ (1). (2.15)

m

G-(p) = (2.14)

In particular, for a uniformly magnetized system, i#,,(+ = 0) = M for all n, we have an
exact exponential relaxation

M, (1)

=2 G =G g =0, =e""™ (2.16)

at any finite temperature, where the relaxation tiggs given by equation (1.9).

Throughout the following, we shall be mostly interested in the non-equilibrium scaling
regime of long times, large distances and low temperatures, suchr thatl 7eq are
simultaneously large but comparable, i.e., their rafinq is arbitrary, and the same holds
for n andéeq:

I~ Teq > 1 n ~ &eq > 1 (2.17)
The scaling law (1.11) then implies
1~ Teq~ n® ~ ES (2.18)

As a consequence, ~ g2 ~ u? are simultaneously small, and equation (2.11) simplifies to

FL ~
G (¢, p~= 2 r i (2.19)
Performing the inverse Laplace transform first, we obtain
1 t n?
G,(t)~ ex <—— — —) 2.20
2t P Teq 2t ( )

which is the scaling form of the Green function (2.13), involving the variables; and

n/+/t, in agreement with equation (2.18). At zero temperature the exponential damping factor
exp(—t/teq) is absent, so thad, (¢) is a function ofn /+/t only, reflecting the statistical self-
similarity of the coarsening process. In this case the Gaussian profile is normalized, again
emphasizing the underlying diffusive mechanism.
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3. Equal-time correlation function

The equal-time correlation function between any two spins is defined as
C(m,n, 1) = (on(1)o,(1)). (3.1)

In the following, unless otherwise specified, we shall consider a random initial condition,
defined by averaging over all possible initial configurations with equal weights. This procedure
corresponds to quenching the system at time0 from its equilibrium state at infinitely high
temperature. Because the invariance under spatial translations along the chain is preserved
by the dynamics, the correlation functi@i(m, n, r) only depends on the distange — m|
between both spins. We denote it as

C(m,n,t) = Cp_pn(t). (3.2)
We have, in particular,
Co(t) = 1. (3.3)

The equal-time correlation function can be shown, in analogy with equation (2.4), to obey
coupled linear differential equations of the form [1]
dc, (¢
20 - 26,0+ (a0 +Ca) (1 £0) (3.4)

with condition (3.3), and the initial valug, (t = 0) = §,.0.

In order to solve equation (3.4), we complete them by the corresponding equation for
n = 0, with a time-dependent soure€) in the right-hand side, to be determined in such a
way that condition (3.3) be fulfilled. In other words, we consider the equations

dc, (¢
20 = 26,1 + 7 (Cora(0) + Crna) + 0By (3.5)
which read, in Fourier—Laplace space,
pC™(g. p) = 2(y cosq — 1)C (g, p) +v"(p) + 1 (3.6)
yielding
L
FL v-(p)+1
= — 3.7
C™(q.p) 5722y cosg 3.7)
Condition (3.3) then reads
2 g vt +1 1
[ r - L@ 1 09)
o 27 Vp+22—4y2 p
hence
V(p+2)2—4y?
o (p) = % 1 (3.9)
We thus obtain the result
2 __ 2
g, py= Y PT W (3.10)

~ p(p+2—2ycosg)
or else

In]
1({p+2—/(p+22?—4y?
ctpm==(2 (proy—4y (3.11)
P 2y
which we now discuss.
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Equilibrium. At any finite temperature, and for long enough times > t.q, the
correlation functiorC, (¢) converges to its equilibrium valu€,, ¢q = Iimpﬁo(pcb(p)). From
equation (3.11) we recover the well known expression [18]

|
1- /12
Coeq= (—”) — g Hhl, (3.12)
14

Non-equilibrium. Let us analyse the non-equilibrium properties in the regime (2.18) of low
temperatures and long times. In this regime expressions (3.10) and (3.11) scale as

FL ~ 2t
p(p+q°+u)

and

g Inl/ pHu?

Chp)~ (3.14)

Equation (A.1) leads to the following explicit scaling form:

1 [n| _ n|
~ T el In|
C,(t) > {e” erfc(zﬁ + M\/Z) +e# erfc(zﬁ ;m/?)} (3.15)

for the equal-time correlation function, involving two scaling variabje&, ~ 2t/7eq and
n/+/t. The error function, erf, and the complementary error function, erfare defined as

2 [ 2 (™ .
erfz = —/ e dx erffcz=1—erfz = —/ e dx. (3.16)
NEL NZ A

An alternative expression far, (¢) is
2

_nl " du 2 n
C”(I)NE/O Wexp( uwu ™ (3.17)

which can be obtained from either equation (3.13) or (3.15). The following limiting situations
are of interest.

(i) At zero temperature, and more generally in the domain-growth regime ¢ < teg),
we can sei = 0 in equation (3.15), which thus simplifies to
|n| >
C,(t)~erfcl —= | . 3.18
o ~erte( ) (3.18)
This expression [3, 15] involves only one scaling variable/t, reflecting the fact that,
in this regime, the pattern formed by the domains is self-similar.
(i) In the opposite regimer > 1), expression (3.15) converges exponentially quickly to
its equilibrium value (3.12), as

C,(t) — C ~ wuin| ( t >_3/2 2/ (3.19)
" mea 427 Teq ’ .
(iii) The short-distance or Porod regime
1< |n| < &g~ V1t (3.20)

is yet another situation of interest [3]. In this regime, equation (3.15) becomes
Cu(t) = 1— A(1)|n] (3.21)
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with

— 2t

Jrt

This result may also be found from equation (3.14), by notingthgtp + 12 <« 1, and
using equation (A.2). Expression (3.22) for the amplitude) interpolates between the
power-law behaviour

At) = + perf(uv1). (3.22)

1
Aty ~ — 3.23
) N7 (3.23)
in the domain-growth regime, in agreement with equation (3.18), and the equilibrium
value
Aeq ™ 1 (3.24)

in agreement with equation (3.12).

Equation (3.21) also holds for finite value$ = 0, 1, 2, . . . of the distance between spins,
in the scaling regime&eq >> 1,7 > 1). In particular, the density of defects (domain walls) in
the system reads
1-Ci() AW

2 2
The result (3.21) is thus in quantitative agreement with the general predictions given in [3] on
the so-called Porod singularities of correlation functions, whose form depends on the nature
of topological defects, and whose amplitude is known in terms of the dengityf these
defects.

The spatial range over which ferromagnetic order has propagated atidn&e measured
by the dimensionless susceptibility

X(t) =) Cu(t)=CF(g=0.1) (3.26)

pdef(t) = (3.25)

for which equation (3.10) yields

L 1 /p+2+2%
x (p)= ;‘/ pir2-2y (3.27)

Throughout the non-equilibrium scaling regime (2.18), we have

2
L
x (P — (3.28)
pyVp+p?
i.e., using equation (A.3),
2
x (1) ~ o erf(uv/1). (3.29)

This result interpolates between the square-root behaviour

x(t) =~ 4\/Z (3.30)
g

in the domain-growth regime < teq), in agreement with equation (3.18), and the limit

2
Xeq ™ — (3.31)
7
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as equilibrium is approached > teq). This last expression is the scaling behaviour of the
exact equilibrium value

+1—/1—y?
R_YT2oNo TV g (3.32)

Xeq = COtanh— =
= 2 y—1+/1-y2
corresponding to equation (3.12).
Finally, the dimensionless product

— 2t
Q1) = A()x (1) = 2erf(uv/1) ( © + erf(,u,«/?)) (3.33)
N/t

is a form factor characteristic of the correlation profile. It increases from the valsed/n
in the domain-growth (aging) regime (see equations (3.23), (3.30)) to the equilibrium value
Qeq = 2 (see equations (3.24), (3.31)).

4. Two-time correlation function

We now consider the two-time correlation function
C(m,n,t,s) = (0,(1)0n(s)) 4.1)

whereys is the waiting time and = s+7 is the observation time. For arandom initial condition,
invariance under spatial translations yields

C(m,n,t,s) = Cu_n(t,s). 4.2)

This two-time correlation function can be shown, again in analogy with equation (2.4), to
obey the coupled linear partial differential equations [1]

aC,(t,

% =—C,(t,s)+ g(cn,]_(t, 5) + Cre1(t, 5)) (43)
for ¢t > s, with the initial value

Cu(s,5) = Cy(s) (4.4)

attimer = s, i.e.,t = 0, where the right-hand side is the equal-time correlation function,
given in Fourier—Laplace space by equations (3.10) and (3.11).

The second argumenplays the role of a parameter in equation (4.3), hence this equation
is formally identical to equation (2.4), with the initial condition (4.4) playing the role of
M, (t+ = 0). The solution of equation (4.3), seen as an evolution equation in taeiable, is,
therefore, formally identical to that of equation (2.4), and reads

Cn (S +7, S) = Cn(s) * Gn(f) = Z Cm (S)anm(l') (45)
In order to write down this solution explicitly, it is convenient to introduce the double-Laplace

transform of the functioit’, (s + , s), wherep, is conjugate ta, the transform being denoted
by Ly, andp is conjugate ta, the transform being denoted by L:

[o¢] o0
CrIZLv(P» Ds) = / / Cy(s +1,5)e PP dg dr. (4.6)
0 0
With this definition, the solution of equation (4.3) reads
C™(q. py)

C™Mt(q. p, py) = (4.7)

p+1—ycosq
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i.e., using equation (3.10),

V(ps +2)% — 4y?
ps(ps +2—2y cosq)(p+1—ycosq)
Inthe following, we shall mostly be interested in the diagonal component of the correlation
function, or autocorrelation functio@y(z, s). Equation (4.8) yields, upon integration ovgr

LL, _ 1 (ps +2)2 —4y2
Co (1) = ps(ps — 2p) (p+1)2— 2 2| (4-9)

The discussion given at the end of section 3 on the behavid@yy(@f in various regimes is
readily extended to the two-time correlation funct@(z, s) considered in the present section,
using its integral-transform expressions (4.8), (4.9).

C™(q, p. ps) = (4.8)

Equilibrium. The equilibrium correlation function is obtained by letting> oo (in practice,
§ 3> Teg), While keepingr = ¢ — s fixed. Equation (4.8) simplifies to

JV1—y2
(4.10)
(1—ycosg)(p+1—ycosq)
which yields, performing the inverse Laplace transform first,

Cpeq(t) = MM — /1 — ny Gu(u)du = /11— ;/Zf G,(u)du. (4.11)
0 T
In particular, the equilibrium autocorrelation function reads
Coeq(r) =v1-— y2/ Go(u) du. (4.12)

In the scaling regime, where andreq are large and comparable, using equation (2.20), the
above formula simplifies to

Céq(q, p) =

Coeq(T) ~ erfc( i) . (4.13)

feq

Non-equilibrium. The generalization of the non-equilibrium scaling regime (2.18) of long
times, large distances, and low temperatures, to the present case of two temporal variables
consists of taking, t, and zeq Simultaneously large but comparable, with arbitrary ratios
between them, and the same foand&.g, i.e., using equation (1.11) again,

§~T Teq ~ n2 ~ Eezq > 1 (414)

As a consequence, ~ p ~ g> ~ u? are simultaneously small. In this regime, equation (4.9)
reads

2
Ps/2p + 2/ ps + 2 +/2p + ?)
Performing first the inverse Laplace transform of this expression with respegt uging
equation (A.4), we get

LL, ~
Co ' (p, ps) ~

(4.15)

. 7/2
Co' (T, ps) =

erfc (\/(px T MZ)T/z) . (4.16)

s



Response of non-equilibrium systems at criticality 1161

Then performing the inverse Laplace transform with respegt tausing equation (A.5), we
obtain

V2T 2 § eﬁﬂzM
Co(s +1,5) ~ e 2 ——— du. 4.17
ols+7.5) T o Qu+1t)J/u u ( )
The change of variable = (z/2) tar? 6 yields
2 (9 _
Co(s +1,5) ~ —/ g 1’1/2c030) g (4.18)
7 Jo

with

[2s
® = arctan,/ —. (4.19)
T

Equation (4.18) gives the general scaling form of the two-time autocorrelation function. It can
be alternatively expressed as a double-Gaussian integral

4 [ BT o
Co(s +1,5) ~ ;/mdgfo e €7 dy). (4.20)
UA/T

Only in the symmetric situatio® = x /4, i.e.,t = 2s, ort = 3s, does this integral simplify
to

Co(3s, 5) ~ 3(1 — erf(u/s)). (4.21)
Yet another reformulation of the result (4.18) reads
2 /2 1.3 2
Cols +1,9) ~ =\ | e ™20y (2,1, 2 -2 — % (4.22)
TV T 2 2 T

where @, is the confluent hypergeometric series in two variables [19], namely the scaling
variables 2/t andu?s ~ 2s/teq.

The fluctuation—dissipation ratio (1.6) involves the derivativ€'g, s) with respect to
at fixed observation time for which equation (4.18) yields the simpler expression

ACo(t =5 +71,5) 2(s + 1) e 1 —i2/2
~ +perf — 4.23
s (2S+f s et ) e (4.23)

Let us discuss some limiting cases of equations (4.18) and (4.23).

(i) At zero temperature, and more generally in the domain-growth regime (1.13),
the autocorrelation function exhibits aging, i.e., it only depends on the ratio
Equation (4.18) indeed simplifies far= 0 to Co(z, s) ~ 20 /7, i.e.,

2 /12
Co(s + 7,5) =~ — arcta —s. (4.24)
T T
This expression [13—-16] assumes the scaling form
Co(s +1,5) ~ F(x) (4.25)
with
t
x=l=1+121 (4.26)
N N
and

2 [ 2
F(x) = —arctan,/ —. (4.27)
T x—1



1162 C Godrche and J M Luck

We haveF (3) = % in agreement with equation (4.21). Similarly, equation (4.23) becomes

aCo(t,s) _ Fi(x)
as T
with F1(x) = —x dF(x)/dx, i.e.,

x | 2

(i) For s — oo with 7 fixed, i.e.,p;, — 0, equation (4.18) converges to the equilibrium
form (4.13); this is obvious using equation (4.16).

(iii) The early-time regime, or temporal Porod regime (1.14), is the counterpart of the spatial
Porod regime (3.20). From equation (4.23), we find

9Co(s +7,5) _ Als)

(4.28)

4.30

s 21T ( )

whereA(s) has been defined in equation (3.22). We thus obtain, to leading order,
2

Cols +7,8) ~ 1— A(s),] 2. (4.31)
4

The replacement ofz| in equation (3.21) by (a constant timegjr in equation (4.31)
reflects, once more, the underlying diffusive mechanism. Finally, the behaviour (3.23) of
A(s) in the domain-growth regime is in agreement with equation (4.24), while equation (3.24)
matches (4.13). The generalization to the spatio-temporal Porod regime
1gn?~1Ls~1eq (4.32)

is straightforward. One has, using equations (4.5), (3.21) and (2.20),
efnz/(Zr)

V2T

where the convolution involves the spatial coordinateReplacing the discrete sum by an
integral, we obtain

Co(s+1,5) ~1— A(s) {\/ize"z/(z” +n erf (\/nz_) } . (4.34)

This result interpolates between the spatial behaviour (3.21) of the equal-time correlation
function, fort = 0, and the temporal behaviour (4.31) of the autocorrelation function, for
n=0.

Cu(s+t,5) = (1— A(s)|n]) * (4.33)

5. Two-time response function

Suppose now that the system is subjected to a small magnetiéffjedtl depending on the site
labeln and on time > 0in an arbitrary fashion. This amounts to adding to the ferromagnetic
Hamiltonian (1.1) a time-dependent perturbation of the form

SH(t) = = Y Hy()ou(t). (5.1)
The dynamics of the model is still given by the stochastic rule (1.2), where the local field
acting on the spiw, () now reads

hu (1) = J(0p—1(t) + 0p41(1)) + Hy (2). (5.2)
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We again consider a random initial condition. Causality and invariance under spatial
translations imply that the magnetizatidfy, (r) at timer reads

M, = (On = d R,_n(t,u)H, +.. 5.3
(t) = (0,(1)) ﬁ/o u; (t, u) H, () (5.3)

to first order in the magnetic fieldd,(z). This formula defines the two-time dimensionless
response functio®,_,, (¢, s) of the model. A more formal definition reads

SM, (1)
SH,, (s) (H=0) ’

The evolution equation (2.2) still holds in the presence of arbitrary external magnetic
fields. Furthermore, we have, to first order in the magnetic #igld

tanh(Bh,) = tanh(BJ (0,—1+ 04+1)) + BH, (1 — tantf (BJ (0,1 + 0441))) + - - - (5.5)
together with the identities

Ry_m(t,s) =T (5.4)

@nh(BJ (0,1 + 41)) = 2 (041 + 0e1)

2

e (5.6)
tanl’?(ﬂ]((fn,]_ +t0ope1)) = 7(1 +03-100+1)-

Inserting these expressions into equation (2.2), we readily obtain that, again to first order in the

magnetic fieldHd, (r), the magnetization&df,, () obey inhomogeneous differential equations of

the form

dm,, (v)
dr

2
= —M,(t) + g(MHm + Myer(1)) + BH, (1) (1 - %(1 + c,,l,m(r))) T

(5.7)

As a consequence, the two-time response funclpf, s) itself obeys coupled linear
differential equations, of the form

IR, (2,
% = —R,(t,s) + %(Rn-l(t, §) + Ry+a(t, 5)) (5.8)
for ¢ > s, with the initial value
R,,(S, S) = w(s)Bn,O (59)
and with
2
w@):l——5ﬂ+Cﬂm) (5.10)

where C»(s) is the equal-time correlation two sites apart, which is given in Laplace space
by equation (3.11). Equation (5.8), with its initial condition (5.9), is formally identical to
equation (4.3) with initial condition (4.4). Hence its solution reads

R,(s+1,8) =w(s)G,(1) (5.11)
or, in Laplace space with respectsto
Ry (z, ps) = w" (p) Gy (v). (5.12)

Using equation (3.11), we obtain
) + 2 s
wh(p) = B2V v 2 a2 -1 - B (5.13)
Ps 4
Let us now discuss the general expression of the response function, given in Laplace space
by equations (5.12) and (5.13), along the same lines as for the two-time correlation function.
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Equilibrium. At equilibrium, i.e., fors — oo with t fixed, one gets, either using
equation (3.12) or taking the, — 0 limit of equation (5.13),

weq - v 1 - ‘)/2 (5.14)

hence
Ryeq(t) = V1 —y2G, (7). (5.15)
Comparing this equation to (4.11) leads to the identity
dc,
Ry eq(T) = _%(T) (5.16)
T

which is the fluctuation—dissipation theorem (1.5), in dimensionless form.

Non-equilibrium. For simplicity we again focus our attention on the diagonal component
Ro(t, s). In the scaling regime (4.14), we have

Vst (5.17)

s

wh (py) =

Equation (A.2) implies that in this regime the functioiis) coincides with the amplitudé (s),
defined in equation (3.22). Using equation (5.12), and the scaling form (2.28)(o%, we
obtain the remarkably simple result

A e—;l.zr/Z
Ro(s +1,5) ~ L (5.18)
2nt

This general scaling form of the two-time response function further simplifies in the following
limiting cases.

(i) At zero temperature, and more generally in the aging regime (1.13), the result (5.18)

becomes
Ro(s +1,5) ~ . (5.19)
TN 25T
We thus obtain a scaling form similar to equation (4.28), namely
F
Ro(s +1,5) ~ 2(0) (5.20)
with
Fa(x) = (5.21)
X)) = —/——. .
2 T/2(x — 1)
(i) In the early-time regime (1.14), we obtain
A
Ro(s +1,5) ~ () (5.22)
2t

where the right-hand side is identical to equation (4.30).
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6. Fluctuation—dissipation ratio

As mentioned in the introduction, a way of characterizing the violation of the fluctuation—
dissipation theorem (1.5) in a non-equilibrium situation consists of introducing the fluctuation—
dissipation ratioX (¢, s) of equation (1.6). In the present situation, we set

. Ro(l, S)
X 5) = 5ot s) /0 6.1)

because the response functiBg\(z, s) is dimensionless.
In the non-equilibrium scaling regime (4.14), equations (4.23) and (5.18) yield

e + /s erf(u/s)
[2(s +7)/(2s + T)]e " + uy/ms erf(uy/s)

which is the scaling form of the fluctuation—dissipation ratio in the variableg, andt/zeq.
Again we discuss some limiting cases.

X(s+1,5)~ (6.2)

(i) Fors > teq, With T andreqfixed, the fluctuation—dissipation ratio converges exponentially
quickly to its equilibrium valueXq = 1, according to

X(s+t,5) vl — [ o9 2/m (6.3)
25\ 2ms
(il) The result (6.2) also shows that we ha¥ét, s) ~ 1 in the early-time regime (1.14),
consistently with the identity between expressions (4.30) and (5.22). Notice, however,
that the initial valueX (s, s) of the fluctuation—dissipation ratio is not identically equal
to 1. For instance, at zero temperature, equations (4.9) and (5.13) yield after some algebra

11(2s)
25(1o(2s) + 11(25))
This expression behaves #ss, s) ~ % inthe regimes <« 1 of no physical interest, while

it converges to unity after a microscopic transient regimexas s) ~ 1 — 1/(4s) for

s> 1.
(iif) At zero temperature, and more generally in the aging regime (1.13), equation (6.2)

X(s,s)=1— (6.4)

simplifies to
X(@+1,5)~ X(x) (6.5)
where the scaling functiof’(x) reads
x+1
X(x) = . 6.6
() = —- (6.6)
This result is consistent with the scaling laws (4.28) and (5.20), as we have
Fa(x)
X(x) = . 6.7
=50 6.7)

The fluctuation—dissipation ratio decreases from the initial val(® = 1, corresponding
to equilibrium, to the non-trivial asymptotic value

Xoo = X(00) = 3. (6.8)

Recent developments on aging systems [4] suggest the following alternative presentations
of the above results concerning the aging regime.

Firstly, there is a functional relationship(C) between the fluctuation—dissipation ratio
X = X(t,s) and the two-time correlation functio = Co(z, s) in the aging regime, as
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Figure 1. Plot of the relationshii (C) of equation (6.9) Figure 2. Plot of the relationship (C) of equation (6.14)
between the fluctuation—dissipation rakaz, s) and the between the integrated respongg(z,s) and the
correlation functiorCo(z, s) in the aging regime. correlation functiorCo(z, s) in the aging regime.

a consequence of equations (4.25) and (6.5). Indeed, eliminating the time tagioveen
equations (4.27) and (6.6), we obtain

1
XC)= ——F——. 6.9
© 1+cod(nC/2) (6.9)
Secondly, the dimensionless integrated response function
po(t,s) = / Ro(t, u) du (6.10)
0
proportional to the thermoremanent magnetization [4], reads
Co(t,9)
po(t,s) = / X (t,u) dCo(t, u) (6.11)
Co(1,0)

using definition (6.1) ofX(z,s). In the aging regime, the existence of the functional
relationship (6.9) implies

po(t,s) =~ p(Colt, s)) (6.12)
with
C
p(C) = / X(chdc’ (6.13)
0
i.e., explicitly,
V2 1 7C
p(C) = - arctan(E tan<7>) . (6.14)

The functionsX (C) and p(C) are shown, respectively, in figures 1 and 2. Eor> 1,
i.e.x =t/s — 1, we have

n? ’ 1 n? 3
X(C):l—Z(l—C) +... p(C)ZE—(l—C)+1—2(l—C) +... (6.15)

while for C — 0, i.e.,x — oo, we have
1 n°C? c n%C3
X = — 4+ + ... = — +
©=3""1 PO=5%"5
Let us point out that the slope of thgC) curve near the origin is given by the asymptotic

valueX (C = 0) = Xo = 3.

(6.16)
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Figure 3. Plot of the asymptotic fluctuation—dissipation raXigs(s) in the non-equilibrium scaling
regime, as given by equation (6.17), againstg.

It is clear from equation (6.2) that the fluctuation—dissipation theorem is maximally
violated fort > s, at least in the scaling regime (2.18). In this situation, equation (6.2)
yields the prediction

e 1S + /s erf(u/s)

X ~ 6.17
A T [A/Ts erf(i/s) ©17

for the asymptotic fluctuation—dissipation ratio
Xas(s) = lim X (s +1,5). (6.18)

Figure 3 shows a plot of the prediction (6.17) 5(s), against the ratie /7eq. In the
aging regime(l <« s < Teq), the asymptotic fluctuation—dissipation ratio smoothly departs

from its limit value X, = 1, as
1
Xas(s) ~ —+i+"' (6.19)
2 1

while it converges exponentially quickly to its equilibrium valligy = 1 for s > teq:

T 3
Xas(s) &~ 1 — /%e-a/feq. (6.20)

7. Discussion

This work is devoted to the non-equilibrium dynamics of the ferromagnetic Ising chain,
quenched from infinite temperature to finite temperature, and evolving under Glauber
dynamics. We have exploited the solvability of this model in order to derive exact expressions
for the spin autocorrelation functiofy(z, s) = (oo(t)oo(s)), and the associated response
function Ro(z, s) and fluctuation—dissipation rati& (¢, s), with ¢ (observation time)>s
(preparation time) and = r — s. While our study of correlations complements a well-
investigated field, the results concerning the response and the fluctuation—dissipation ratio are
entirely novel.

We have given a detailed analysis of the scaling regime of low temperatures, large distances
(proportional to the equilibrium correlation length,) and large times (proportional to the
relaxation timergq ~ ggq) This scaling regime encompasses several limiting situations of
interest:
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o Self-similar domain-growth or aging reginié <« s ~ v < teq). At zero temperature,
because of the self-similarity of the coarsening phenomenon, the various two-time
observables obey simple scaling laws only involving the time ratie= 7/s. This
situation is typical of an aging system [4]. The corresponding scaling functions for
the autocorrelation functiofiy(z, s), its derivativedCo(t, s)/ds, the response function
Ro(t, ), and the associated fluctuation—dissipation ratie, s) are given explicitly in
equations (4.27), (4.29), (5.21) and (6.6). These functions are universal, implying, in
particular, that they are unchanged if the initial condition contains short-range correlations.
These results imply the existence of a non-trivial relationshig’) (see equation (6.9))
throughout the aging regime. At any low but finite temperature, the self-similar domain
growth and the associated aging phenomena are interrupted for times ofgrder

e Spatial(1 < |n| K &q ~ +/5) and temporalt < s ~ 7¢q) Porod regimes. In these
regimes, the autocorrelation function departs from its value of unity in a singular fashion,
involving either ann| [3] or a ./t dependence (see equations (3.21), (4.31)). We have
derived a prediction (3.22) for the common prefacAgr) of both these laws, as well as
the interpolation formula (4.34) in the spatio-temporal regime.

o Equilibrium regime(r ~ 7eq < 5). At low but finite temperature, the system converges
toward equilibrium for times larger tham,. The exponential law of convergence has also
been studied in detail (see equations (3.19), (6.3), (6.20)).

As already underlined in the introduction, one of the most salient outcomes of this study
is the non-trivial limit valueX,, = % of the fluctuation—dissipation ratio for&k s < ¢ in the
aging regime. The value of ., for a system quenched to its critical point coulddgriori
any number betweeki,, = 1 (T > T.: equilibrium) andX., = O (T < T,: domain growth).
It turns out that the answer is exactly half-way between these bounds for the Glauber—Ising
chain. A forthcoming work [17] is devoted to the limit fluctuation—dissipation ratio in systems
having a finite7,, and exhibiting domain growth in a whole low-temperature phase. The
spherical model in any dimensieh> 2 and the two-dimensional Ising model will serve as
benchmarks and lead us to claim tiat is a novel universal characteristic of critical dynamics,
intrinsically related to non-equilibrium phenomena, which can take any value, at least in the
range 0< Xoo < 3.

Let us anticipate that the limit fluctuation—dissipation ratig appears as an amplitude
ratio [17], in the sense used in critical phenomena. For a critical quench in such generic models,
we have indeed

C(t,s) ~ s~ =2/ (x)

3Ca(l, s) ~ g @2/E (1 (7.1)
S
T.R(1,s) ~ s @20/ py (x).

These scaling laws generalize equations (4.25), (4.28), (5.20). The dynamical expaent
accessible from the study of dynamical critical phenomena at equilibrium, whier /s is
again the time ratio. The fluctuation—dissipation ratio therefore scales as

F>(x)

7.2
Fi1(x) (7.2)

X, s)~Xx) =

where the scaling functiof’(x) is again universal. For large values of this rgtio> 1, i.e.,
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1 « s « 1), the scaling functions entering equations (7.1) fall off as
F(x) ~ Bx~*/?
F1(x) &~ Byx /% (7.3)
F(x) ~ ngi)“'/z
wherel., related to the critical initial-slip expone#t [20] by A, = d — z6,, is a dynamical
critical exponent which only manifests itself in non-equilibrium phenomena [21]. The exact

results derived in this paper for the Ising chain agree with the above scaling laws=dr,
z =2,A. = 1andd, = 0. The limit fluctuation—dissipation ratio

Xoo = X(00) = 2—? (7.4)

thus appears as a dimensionless amplitude ratio associated with the behaviour (7.3). It is,
therefore, a novel universal quantity in non-equilibrium critical dynamics.

Appendix A. Some useful inverse Laplace transforms

In this appendix we list a few inverse Laplace transforms, which can be found in [22], and have
been used in the main body of this paper. Notations are as in equation (2.5). The symbols
b denote complex parameters with a positive real part.

a0 £

# e erfc (2%/? + a\/;) +e % erfc (ZL\/? —a t) (A1)
@ 3;_2; +aerf(av/r) (A.2)
p\/% erf(a/1) (A.3)
Vp+ a2(b1+ Vp+a?) & ertals /i) (A-4)
e’ erfc(\/ap) n(a—lﬂ) \/g . (A.5)
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